Mössbauer Spectroscopic Studies of Mercury(II) Chloride Adducts with Binuclear Metallocenes

Masanobu Watanabe, Izumi Motoyama, and Hirotoshi Sano* Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Fukasawa, Setagaya-ku, Tokyo 158 (Received December 25, 1985)

Biferrocene and ferrocenylruthenocene react with HgCl₂ to give very stable adducts. Large quadrupole splitting values (2.93 mm s⁻¹ for biferrocene-2HgCl₂ and 2.99 mm s⁻¹ for ferrocenylruthenocene-5HgCl₂, both at 78 K) indicate the presence of a direct interaction between the Fe and Hg atoms. The stabilities of their adducts suggest a chelating effect between the Fe and Fe or Fe and Ru atoms in biferrocene or ferrocenylruthenocene, respectively.

All attempts in preparing a stable adduct of mononuclear ferrocene with a Lewis acid such as Hg²⁺, Sn⁴⁺, and I⁺ have been unsuccessful, whereas a number of the corresponding ruthenocene adducts were reported to be very stable.¹⁻⁴)

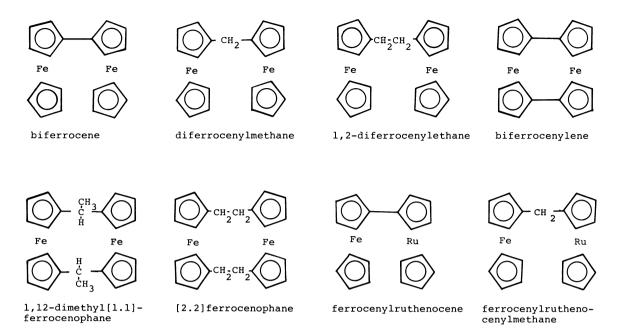
It was recently shown in our previous reports that [2]ferrocenophane derivatives react with various Lewis acids such as Sn⁴⁺, Hg²⁺, and I⁺ to give stable adducts containing a chemical bond between the Fe and Lewis acid atoms.⁵⁻⁷⁾ The stabilities of [2]ferrocenophane adducts were ascribed to the distorted structure of [2]ferrocenophane which makes the nonbonding e_{2g} electrons of the iron atom in ferrocene easier to be ligated to a Lewis acid atom.

The other category of ferrocene derivatives which can provide a stable adduct with a Lewis acid, may be expected in binuclear metallocene derivatives, because their adducts with a Lewis acid are stabilized by a chelating effect of the binuclear ferrocene derivatives if they have a suitable molecular structure.8) Fortunately, a number of binuclear ferrocene derivatives have been synthesized and reported in connection with studies of the mixed-valence state of iron atoms in their monocation salts. For instance, biferrocenium triiodide shows a so-called trapped valence state, while biferrocenylenium pentaiodide shows an averaged valence state.9-11) expected that ferrocenylruthenocene derivatives can provide much more stable adducts with a Lewis acid than the binuclear ferrocenes and that the electronic state of iron atoms in the adducts may provide information about the chelating effect.

Experimental

Materials. Biferrocene,¹²⁾ biferrocenylene,¹³⁾ diferrocenylmethane and diferrocenylethane,¹⁴⁾ 1,12-dimethyl[1.1]ferrocenophane,¹⁵⁾ [2.2]ferrocenophane,¹⁶⁾ ferrocenylruthenocene,¹⁷⁾ and ferrocenylruthenocenylmethane¹⁸⁾ were prepared by the methods reported previously.

Adducts of diferrocenylmethane, 1,2-diferrocenylethane, ferrocenylruthenocene and ferrocenylruthenocenylmethane with HgCl₂ were prepared in diethyl ether by a similar method to that used in the case of biferrocene-2HgCl₂ adduct.⁸⁾ Found: C, 25.71; H, 2.71%. Calcd for


biferrocene–2HgCl₂, $C_{20}H_{18}Fe_2Hg_2Cl_4$: C, 26.29; H, 1.97%. Found: C, 12.52, H, 0.99; Fe, 5.54%. Calcd for diferrocenylmethane–6HgCl₂, $C_{21}H_{20}Fe_2Hg_6Cl_{12}$: C, 12.99; H, 1.10; Fe, 4.78%. Found: C, 13.02; H, 1.09; Fe, 5.51%. Calcd for 1,2-diferrocenylethane–6HgCl₂, $C_{22}H_{22}Fe_2Hg_6Cl_{12}$: C, 13.05; H, 1.10; Fe, 5.08%. Found: C, 14.17; H, 1.27%. Calcd for ferrocenylruthenocene–5HgCl₂, $C_{20}H_{18}FeRuHg_5Cl_{10}$: C, 13.55; H, 1.03%. Found: C, 22.96; H, 2.02%. Calcd for ferrocenylruthenocenylmethane–2.5HgCl₂, $C_{21}H_{20}FeRuHg_{2.5}$ Cl₅: C, 22.75; H, 1.82%.

Reaction products of biferrocenylene, 1,12-dimethyl[1.1]-ferrocenophane and [2.2]ferrocenophane were prepared in ethanol instead of diethyl ether because of better solubility, by following a method similar to that used for the biferrocene-2HgCl₂ adduct. The dark green precipitates that formed were filtered, washed with ethanol or diethyl ether and dried in a vacuum. Found: C, 16.86; H, 1.13; Hg, 54.00%. Calcd for biferrocenylenium(HgCl₃-)(HgCl₂)₈, C₂₀H₁₆Fe₂Hg₄Cl₉; C, 16.11; H, 1.07; Hg, 53.86%. Found: C, 20.51; H, 1.71%. Calcd for 1,12-dimethyl[1.1]ferrocenophanium(HgCl₃-)(HgCl₂)_{2.5}, C₂₄H₂₄Fe₂Hg_{3.5}Cl₈: C, 20.65; H, 1.70%. Found: C, 27.74; H, 2.31%. Calcd for [2.2]-ferrocenophanium²⁺(HgCl₃-)₂, C₂₄H₂₄Fe₂Hg₂Cl₆: C, 27.26; H, 2.37%.

Measurements. ⁵⁷Fe-Mössbauer measurements were carried out using a ⁵⁷Co(Pt) source moving in a constant acceleration mode. The values of the isomer shifts were described with respect to metallic iron foil. The experimental error of the isomer shifts (I.S.) and quadrupole splittings (Q.S.) was $\pm 0.02 \,\mathrm{mm \, s^{-1}}$. Cyclic voltammograms were obtained by using a Hokuto Denko HB-107A function generator and a Hokuto Denko HA-201 potentiostat combined with a standard three-electrode configuration. A working electrode of platinum button-(Beckman) and an Ag/AgCl reference electrode were connected via a salt bridge containing (0.1 mol dm⁻³) [(C₄H₉)₄N]ClO₄ in CH₃CN.

Results and Discussion

Biferrocene reacts with a large excess of HgCl₂ in diethyl ether, giving deep-red precipitates thought to be biferrocene-2HgCl₂, based on an elemental analysis. The adduct is stable in air for a long time (more than 200 d) at room temperature, while ferrocene-7HgCl₂ changes immediately into a ferricinium salt.¹⁹⁾ Other biferrocene derivatives, such as

1',1"'-dihalobiferrocene 1',1"'-dialkylbiferrocene, react with HgCl₂ to give paramagnetic green precipitates. The results of Mössbauer spectroscopic studies of these precipitates show that these biferrocene are oxidized by HgCl₂, probably because of a steric hindrance of the substituents and that they give a trapped-valence state for each monocationic ferricinium salt.

Typical Mössbauer spectra of a biferrocene–2HgCl₂ adduct and the biferrocene itself, are shown in Fig. 1 and Mössbaur parameters are listed in Table 1. The Q.S. value (2.93 mm s⁻¹ at 78 K) found in the biferrocene–2HgCl₂ adduct is a little smaller than that of [2]ferrocenophane–3HgCl₂ adduct (3.29 mm s⁻¹ at 78 K)⁶ but still larger than that of the original biferrocene. The results indicate that the biferro-

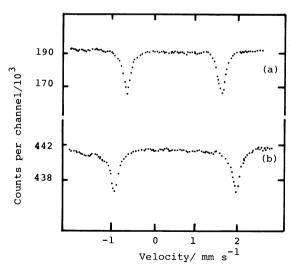


Fig. 1. Mössbauer spectra of (a) biferrocene and (b) biferrocene-2HgCl₂ adduct, both at 78 K.

cene-2HgCl₂ adduct should have Fe-Hg bonds, as already verified in the HgCl₂ or SnCl₄ adducts of [2]ferrocenophane.^{5,6)}

A little lower Q.S. value and large stability of the

Table 1. Mössbauer Parameters of Binuclear Ferrocene Derivatives and Their HgCl₂ Adducts and Salts

Compound	Temperature	Q.S.	I.S.
	K	$\overline{\text{mm s}^{-1}}$	mm s ⁻¹
Biferrocene	78	2.33	0.53
Diferrocenylmethane	78	2.38	0.52
Diferrocenylethane	78	2.40	0.50
Biferrocenylene	78	2.44	0.53
1,12-Dimethyl[1.1]-			
ferrocenophane	78	2.45	0.54
[2.2]Ferrocenophane	78	2.43	0.52
Ferrocenylruthenocene	78	2.36	0.53
	300	2.29	0.46
Biferrocene-2HgCl ₂	78	2.93	0.55
Diferrocenylmethane-6HgCl ₂	78	3.02	0.53
Diferrocenylethane-6HgCl ₂	78	3.00	0.50
Biferrocenylenium+	78	1.87	0.53
$\mathrm{HgCl_3}^-(\mathrm{HgCl_2})_3$	200	1.83	0.47
	300	1.76	0.43
1,12-Dimethyl[1.1]ferroceno-	78	1.93	0.52
phanium+ HgCl ₃ -(HgCl ₂) ₂	. 5	0.0	0.53
[2.2]ferrocenophanium ²⁺ -			
$(HgCl_3^-)_2$	78	0.0	0.53
Ferrocenylruthenocene-5HgC	11, 78	2.99	0.57
Ferrocenylruthenocenyl-	-		
methane-2.5HgCl ₂	78	2.84	0.55
Biferrocenylenium ⁺ I ₅ ^{- a)}	4.2	1.756	0.542
,	300	1.719	0.441
Ferrocene-7HgCl ₂ b)	275	2.94	0.45

a) Data were taken from Ref. 10. b) Data were taken for the fresh sample reported in Ref. 19.

biferrocene-2HgCl₂ adduct compared with ferrocene-7HgCl₂¹⁹⁾ suggest that biferrocene reacts with HgCl₂ as a chelating agent.

It is found that biferrocene reacts with SnCl4 to give only green-colored precipitates in which iron atoms are not ligated to Sn4+ ions but partially oxidized to a mixed-valence state (Q.S. values, 2.26 and 0.29 mm s⁻¹ at 78 K).²⁰⁾ Also, biferrocene is oxidized to a dicationic biferricinium salt in the reaction with SbCl₅ (Q.S., 0.25 mm s^{-1} and I.S., 0.55 mm s^{-1} at 78 K, which are characteristic of ferricinium-like iron(III)). Although [2]ferrocenophane reacts with other Lewis acid species, such as CdCl₂, ZnCl₂, CoCl₂, to give corresponding adducts with them,21) biferrocene does not react with these Lewis acids. results may be interpreted by assuming that Hg2+ ions are a softer acid than Sn4+ and Sb5+ atoms, and that the e2g electrons in biferrocene cannot be ligated to Lewis acids harder than Hg²⁺.

Diferrocenylmethane and 1,2-diferrocenylethane also react with HgCl₂ as in the case of biferrocene, giving orange-yellow precipitates with a color that is very similar to that of ferrocene–7HgCl₂. The products are less stable than the biferrocene–2HgCl₂ adduct; i.e., they change color to blue–green after being allowed

to stand at room temperature for several days after preparation. However, they are much more stable than the ferrocene-7HgCl₂ adduct which completely changes from orange-yellow to blue-green within a day.

The results indicate that the diferrocenylmethaneand 1,2-diferrocenylethane-6HgCl₂ adducts have Fe-Hg bonds, although the bonds seem to be a little weaker than the Fe-Hg bond in the biferrocene-2HgCl₂ adduct. Actually, the doublet component with a large Q.S. value decreases and a broad-line component with a small Q.S. value increases in their Mössbauer spectra (Fig. 2), if the compounds are placed in air for several days.

Biferrocene, 1,12-dimethyl[1.1]ferrocenophane and [2.2]-ferrocenophane react with HgCl₂ in ethanol giving dark-green paramagnetic precipitates. The ⁵⁷Fe-Mössbauer spectra of these reaction products are shown in Fig. 3, and the Mössbauer parameters are also listed in Table 1. A smaller Q.S. value (1.87 mm s⁻¹ at 78 K) compared with that of biferrocenylene (2.44 mm s⁻¹ at 78 K) was found and assigned to an averaged valence state of Fe(II) and Fe(III) as expected from the dark color of the adduct. The Q.S. value is close to that of biferrocenylenium

Fig. 2. Mössbauer spectra at 78 K of (a) diferrocenylmethane-6HgCl₂ adduct immediately, (b) 7 d after preparation, (c) 1,2-diferrocenylethane-6HgCl₂ adduct immediately, (d) 7 d after preparation. Peak position of diferrocenylmethane and 1,2-diferrocenylethane is shown.

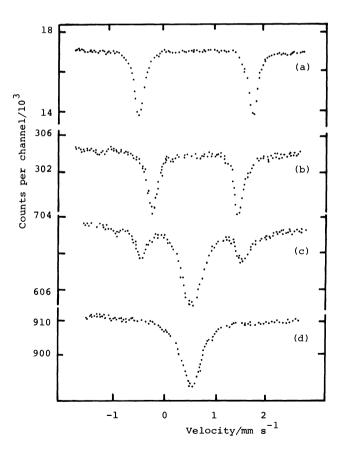


Fig. 3. Mössbauer spectra at 78 K of (a) biferrocenylene, and reaction products of (b) biferrocenylene, (c) 1,12-dimethyl[1.1]ferrocenophane, (d) [2.2]ferrocenophane with HgCl₂.

pentaiodide (1.756 mm s⁻¹ at 4.2 K), which is known to show a typical averaged valence state.¹⁰⁾

Magnetic susceptibility measurements showed that the monocationic biferrocenylenium salt is paramagnetic. The effective magnetic moment in a temperature range from 78 K to 120 K was found to be 2.02 BM, also close to the value characteristic of binuclear ferrocene derivatives in an averaged valence state (e.g., 1.90 BM for biferrocenylenium pentaiodide). The results indicate that biferrocenylene is partially oxidized by HgCl₂ to form an averaged valence state of a monocationic biferrocenylenium salt.

The 1,12-dimethyl[1.1]ferrocenophane–HgCl₂ product showed two quadrupole splitting doublets (Q.S.; 1.93 mm s⁻¹. I.S.; 0.52 mm s⁻¹ and Q.S.; 0.0 mm s⁻¹, I.S.; 0.53 mm s⁻¹ at 78 K). These values are almost the same as those for the monocationic 1,12-dimethyl[1.1]ferrocenophanium triiodide salt.¹⁰ This fact suggests that an interaction takes place between the iron atom, however, the interaction is not as strong as that of biferrocenylenium.

[2.2]Ferrocenophane reacts with HgCl₂ in ethanol giving dark green precipitates which are expressed as [2.2]ferrocenophanium²⁺(HgCl₃⁻)₂. In the Mössbauer spectra of this compound, only a broad singlet peak is observed, suggesting that [2.2]ferrocenophane is oxidized by HgCl₂ completely to a dicationic [2.2]ferrocenophanium species.

In the cyclic voltammograms of biferrocenylene and 1,12-dimethyl[1.1]ferrocenophane, two kinds of one-electron oxidation peaks (0.265 and 0.855 V for biferrocenylene,²²⁾ 0.38 and 0.61 V for 1,12-dimethyl-[1.1] ferrocenophane) were observed, while only one two-electron oxidation peak (0.42 V) was found in that of [2.2]ferrocenophane. The difference between the first and second half-wave potentials, $\Delta E_{1/2}$, has often been used as a parameter of the interaction between the Fe-Fe atoms in binuclear ferrocene derivatives. The fact that a larger value of $\Delta E_{1/2}$ (0.59 V) is observed in the biferrocenylene than the value (0.23 V) found in 1,12-dimethyl[1.1]ferrocenophane, is in accordance with the results of Mössbauer spectroscopic studies on binuclear ferrocenophanes' monocationic salts.

It can be concluded that doubly-bridged ferrocenophanes react with HgCl₂ gving only a ferricinium salt and not an adduct containing an Fe-Hg chemical bond. The reason that biferrocene, diferrocenylmethane, and 1,2-diferrocenylethane form adducts with HgCl₂ can be explained by assuming a more flexible molecular structure compared with the rigid structure of biferrocenylene, 1,12-dimethyl[1.1]ferrocenophane and [2.2]ferrocenophane. A large conformational change in such a way that the two Fe atoms are ligated to the HgCl₂ may occur, for instance, in biferrocene-2HgCl₂ but such a change

can not be allowed in a rigid structure of binuclear ferrocenophanes.

Based on this speculation, more stable HgCl₂ adducts were prepared using ferrocenylruthenocene derivatives. The results of the cyclic voltammography of ferrocenylruthenocene show two one-electron oxidation peaks ($E_{\rm ox}$; 0.45 and 0.92 V), one is ascribed to an oxidation of ferrocene-type iron atoms (0.45 V) and the other is to that of a ruthenocene-type ruthenium atoms (0.92 V); i.e., Ru atoms are oxidized less easily than Fe atoms by HgCl₂ in this compound. It is known that ruthenocene itself reacts with various kinds of Lewis acids such as I₂, SnCl₄, SbCl₅, and HgCl₂, to give relatively stable products containing a chemical bond between Ru and the Lewis acids.¹⁻⁴⁾

Ferrocenylruthenocene reacts with a large excess of HgCl₂ in diethyl ether giving diamagnetic orange-yellow precipitates. The product, expressed ferrocenylruthenocene-5HgCl₂, is more stable in air than biferrocene-2HgCl₂. The biferrocene-2HgCl₂ adduct changes color to green-blue upon standing at 80 °C for 2hr, while the color of ferrocenylruthenocene-5HgCl₂ remains upon standing under the same conditions.

Typical Mössbauer spectra of ferrocenylruthenocene and its HgCl₂ adduct are shown in Fig. 4. The Q.S. value of ferrocenylruthenocene is 2.36 mm s⁻¹ at 78 K as shown in Table 1, which is nearly the same as that of biferrocene (2.33 mm s⁻¹ at 78 K), suggesting there is no direct effect of ruthenocenyl group on Fe atoms in ferrocenylruthenocene.

A larger Q.S. value is observed in ferrocenyl-ruthenocene–5HgCl₂ adduct (2.99 mm s⁻¹ at 78 K) compared with the value of the original ferrocenyl-ruthenocene.

Ferrocenylruthenocenylmethane reacts with HgCl₂

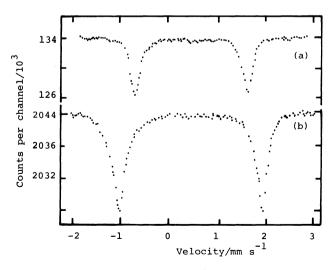


Fig. 4. Mössbauer spectra of (a) ferrocenylruthenocene and (b) its HgCl₂ adduct, both at 78 K.

in diethyl ether, giving a diamagnetic orange-yellow product. The Q.S. value found in this adduct (2.84 mm s⁻¹ at 78 K) is a little smaller than those of binuclear ferrocene derivatives-HgCl₂ adducts or ferrocenylruthenocene-5HgCl₂ adduct, but still larger than that of the original ferrocenylruthenocenylmethane (2.44 mm s⁻¹ at 78 K). The results indicate that the ferrocenylruthenocenylmethane adduct has an Fe-Hg bonding, although the bond should be a little weaker than the Fe-Hg bond in the HgCl₂ adduct of ferrocenylruthenocene.

Actually, the HgCl₂ adduct of ferrocenylruthenocenylmethane is not as stable as the HgCl₂ adduct of ferrocenylruthenocene. After being allowed to stand in air for several days after preparation, the color of the adduct gradually changed into blue-green, as in the case of diferrocenylmethane-6HgCl₂ and 1,2-diferrocenylethane-6HgCl₂ adducts. The reason that ferrocenylruthenocenylmethane forms a less stable adduct can be explained by the larger distance between the Ru and Fe atoms in the molecule compared in the ferrocenylruthenocene molecule; i.e., the distance of Fe-Ru atoms may be too large to make a stable chelation like ferrocenylruthenocene-5HgCl₂ adduct.

The facts that ferrocenylruthenocene can provide a more stable adduct than biferrocene and ferrocenylruthenocenylmethane with HgCl₂ and that the Q.S. value is similar to that of biferrocene-2HgCl₂ adduct, also suggest a possibility of chelation,

$$(C_5H_5)Fe \overbrace{\hspace{1cm} (C_5H_4)-(C_5H_4)}^{\hspace{1cm}} Ru(C_5H_5) \ \ rather \ \ than \ \ a$$

monodentated donation such as $-(C_5H_5)Ru \rightarrow Hg^{2+} \leftarrow Fe(C_5H_5)(C_{10}H_8)(C_5H_5)Ru \rightarrow Hg^{2+} \leftarrow Fe(C_5H_5)-$. It is tentatively concluded in this study that ferrocenyl-ruthenocene and biferrocene form very stable adducts with $HgCl_2$ because of an appropriate distance between the Fe-Ru or Fe-Fe atoms for chelation to take place in these adducts. However, further studies must be conducted to provide direct evidece to prove the chelating bond in the adducts.

References

- 1) D. N. Hendrickson, Y. S. Sohn, W. H. Morrison, Jr, and H. B. Gray. *Inorg. Chem.*, 11, 808 (1972).
- 2) W. H. Morrison, Jr. and D. N. Hendrickson, *Inorg. Chem.*, **11** 2912 (1972).
- 3) K. R. Mann, W. H. Morrison, Jr. and D. N. Hendrickson, *Inorg. Chem.*, **13**, 1180 (1974).
- 4) Y. S. Sohn, A. W. Schueter, D. N. Hendrickson, and H. B. Gray, *Inorg. Chem.*, **13**, 301 (1974).
- 5) M. Watanabe, H. Ichikawa, I. Motoyama, and H. Sano, Chem. Lett., 1983, 1009.
- 6) M. Watanabe, H. Ichikawa, I. Motoyama, and H. Sano, *Bull. Chem. Jpn.*, **56**, 3291 (1983).
- 7) M. Watanabe, K. Sato, I. Motoyama, and H. Sano, Chem. Lett., 1983, 1775.
- 8) M. Watanabe, K. Suto, I. Motoyama, and H. Sano, Chem. Lett., 1984, 1317.
- 9) W. H. Morrison, Jr. and D. N. Hendrickson, J. Chem. Phys., **59**, 380 (1973).
- 10) M. H. Morrison, Jr. and D. N. Hendrickson, *Inorg. Chem.*, **14**, 2331 (1975).
- 11) D. O. Cowan, R. L. Collins, and F. Kaufman, J. Phys. Chem., 75, 2025 (1971).
- 12) M. D. Raush, J. Org. Chem., 26, 1802 (1961).
- 13) M. D. Raush, J. Org. Chem., 28, 3337 (1963).
- 14) P. L. Pauson and W. E. Watts, J. Chem. Soc., 1962, 3880.
- 15) T. H. Barr, H. L. Lentzner, and W. E. Watts, *Tetrahedron*, **25**, 6001 (1969).
- 16) K. Kasahara and T. Izumi, Chem. Lett., 1978, 21.
- 17) E. W. Neuse and M. S. Loonat, *Transition Met. Chem.*, **6**, 260 (1981).
- 18) S. P. Gubin and A. A. Lubovich, *J. Organomet. Chem.*, **22**, 183 (1970).
- 19) R. M. G. Roberts, J. Silver, and I. G. Harrison, J. Organomet. Chem., 209, 385 (1981).
- 20) M. Watanabe, I. Motoyma, and H. Sano, submitted to Bull. Chem. Soc. Ipn.
- 21)H. Sano, M. Watanabe, and I. Motoyama, Hyperfine Interactions, 28, 833 (1986).
- 22) C. LeVanda, K. Bechgaard, and D. O. Cowan, *J. Org. Chem.*, **41**, 2700 (1976).